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Abstract 
This report describes the implementation of decentralized 6G DAWN AI (MS-AE-DE) in all RESILIENT 
PoCs in detail, their KPI measurements according to the defined ones in E3 and their lessons learned 
during the implementation and experiments.  
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Executive Summary  
This document presents the implemented 6GDAWN AI closed-loop (MS-AE-DE) in all defined 
RESILIENT PoCs and their requirements according to Deliverable E3. This deliverable illustrates the 
AI closed-loop (MS-AE-DE) implementation, KPI measurement methods, and lessons learned across 
RESILIENT PoCs. This project decentralized security —intrusion detection and mitigation— and 
analyzes the trade-offs between network resiliency, QoS, and energy efficiency, demonstrating the 
architecture applicability to critical operational challenges. We conclude the deliverable with 
successful implementation of decentralized AI (MS-AE-DE) in all RESILIENT PoCs by measuring the 
associated KPIs as defined in E3.  
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1 Introduction  
This deliverable reports the final results of 6G DAWN’s decentralized AI closed loop—Monitoring 
System, Analytics Engine, and Decision Engine (MS–AE–DE)—validated through Proofs of Concept 
(PoCs) targeting resilience in next-generation wireless networks. The work is grounded in cross-
domain, real-world deployments with measurable KPIs and repeatable control loops that manage 
energy, performance, and security under operational constraints. The RESILIENT project integrates 
decentralized security and trust, so threats are detected and mitigated without degrading service 
integrity, including improving network reliability by identifying and isolating users with 
disproportionate energy consumption. 

Concretely, resilience is demonstrated through (i) decentralized intrusion detection and mitigation 
in Kubernetes with end-to-end 5G connectivity, (ii) strengthening the trustworthiness of federated 
learning via blockchain, and (iii) enhancing NPN resilience by detecting and isolating heavy energy-
consuming users.  

The mentioned PoCs operationalize the decentralized AI (MS–AE–DE) loop over the defined 
interfaces, turning telemetry into timely, auditable action. 

In the following sections, we describe all RESLIENT PoCs implementation details, KPIs measurements 
and lessons learned according to E3. In Table 1, a summary of Use case and PoC mapping with 
decentralized AI (MS-AE-DE) is illustrated. 

 

TABLE 1. ARCHITECTURAL OVERVIEW 

PoC MS AE DE ACT 

R-UC1-PoC1 LADS-Sensor 
(Flow Telemetry) 

LADS-Brain Mitigator Mitigator 

R-UC1-PoC2 SMO-Client FL 
Training Host, 
Chainlink 
Adapter / CLSP-
BC-CAI, 
performanceSub
mission.sol 
(submitNMSE) 
 

Reputation evaluation 
logic (off-chain 
reputation script, 
reputationCalculation.
sol / updateScores) 

ReputationCalcu
lation.sol / 
selectTopPerfor
mers, SMO-
Aggregator 
(client selection 
policy) 

SMO-
Aggregator FL 
Aggregator 
(global model 
update), SMO-
Client FL 
Inference Host 

R-UC2-PoC1 NDT 
platform/MS, AF 

NDT platform/AE, AF AF NDT 
platform/ACT 
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2 RESILIENT Use Cases 
Two different use cases, which comprise a total of three PoCs, are defined under 6G DAWN RESILIENT 
project: 

• Use case R1 Decentralized 6G Security & Trust 
o R UC1 PoC1 -Decentralized intrusion detection and mitigation 
o R UC1 PoC2 – Trustworthy Federated Learning enabled through smart contracts and 

Blockchain 
• Use case R2 Network Resiliency vs QoS and Energy Efficiency 

o R UC2 PoC1 - Detecting and Isolating Energy Consumption-Heavy Users 

 

The following table presents the mapping of Key concepts and PoCs that apply for the RESILIENT 
project: 

TABLE 2. MAPPING OF KEY CONCEPTS AND POCS 

Key Concepts R UC1 
PoC1 

R UC1 
PoC2 

R UC2 
PoC1 

NPN Digital Twin System    X 
Extreme Edge  X   
AI/ML agent for control loops  X  X 
xApps in O-RAN  X   
Relation of vertical KPIs with the network 
configuration 

X  X 

Inter(a)-slice reconfiguration and massive 
slicing  

  X 

NEF instance for KPI data and configuration 
capabilities exposures of NPNs  

  X 

AI/ML methods for reducing energy 
consumption  

  X 

Develop standard compliant network 
interfaces to support AI driven network fault 
management systems at NPN  

  X 

Decentralized Intrusion Detection to 
integrate novel trust-based evaluation 
mechanisms 

X   

Blockchain in 5G  X  
Identification and handling of abnormally 
heavy energy components 

  X 

 

 



E5: Final report on AI for the 6G DAWN AE/MS/DE 15 
   

 
 

 
 

2.1 Use Case RESILIENT Decentralized 6G Security & Trust  

2.1.1 RESILIENT UC1 PoC1 -Decentralized intrusion detection and mitigation  
This PoC will leverage an existing proprietary solution named LADS. LADS is a soft-real time anomaly-
based network intrusion detection system (of type A-NIDS). It is based on an in–house engine for 
feature extraction from network traffic, and two deep learning algorithms – one for anomaly 
detection and another one for attack classification. The PoC of LADS in the 6G DAWN project is 
formed by the feature extraction engine and the unsupervised deep learning algorithm for anomaly 
detection. An important functionality of LADS is the capacity to explain why and what network 
behavioral aspects cause an anomaly. This feature facilitates decision making on what mitigations to 
be applied on the affected assets in the monitored environment. 

2.1.1.1 PoC Implementation details 

PoC Testbed Architecture  

 
FIGURE 1. RESILIENT UC1 POC1 5G TESTBED ARCHITECTURE 

  

As illustrated in Figure 1, This PoC is implemented and tested in CTTC premises. CTTC deployed a 
Kubernetes cluster with 1 master and 3 workers nodes. In the Cluster all toolkits such as MetallB 
loadbalancer, Prometheus and Grafana for monitoring, and persistent volume are deployed. In this 
k8s, open5gs core without UPF in one namespace, UPF in another name space and video on-demand 
streaming are implemented and deployed. The 5G core in k8s is routed and connected to the O-RAN 
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for bringing E2E 5G connectivity and CTTC also uses different kinds of smart phone for testing 
purposes. This k8s cluster hosts all the decentralized intrusion detection and mitigation components. 

At the RAN side, R UC1 PoC1 utilizes srsRAN Project to implement the O-RAN functions of the 
CU/DU, as introduced above in 2.1.1.1. For this PoC, and in collaboration with the 6GBLUR-Joint 
UNICO I+D 5G project (TSI-063000-2021-57), the CU/DU features have been extended to support 
slice-aware scheduling. Furthermore, the gNB also provides extended E2SM-KPM and E2SM-RC 
features, as detailed in Table 3 and Table 4. 

TABLE 3. E2 TRAFFIC-LOAD METRICS PROVIDED BY SRSRAN PROJECT IN R UC1 POC1 

Category Name Description 
Data Radio Bearer DRB.RlcSduTransmittedVolumeUL Transmitted UL data volume 

DRB. RlcSduTransmittedVolumeDL Transmitted DL data volume 
DRB.PacketSuccessRateUlgNBUu UL PDCP SDU success rate 
DRB.PerDataVolumeDLDist.Bin Incoming DL data success 

rate per UE 
DRB.PerDataVolumeULDist.Bin Incoming UL data success 

rate per UE 
Radio Resource Utilization RRU.PrbDl DL PRB usage for user-plane 

traffic 
RRU.PrbUl UL PRB usage for user-plane 

traffic 
RRU.PrbTotDl DL PRB usage for all traffic 
RRU.PrbTotUl UL PRB sage for all traffic 

 

TABLE 4. E2 RC ACTIONS PROVIDED BY SRSRAN PROJECT IN R UC1 POC1 

Category Name Description 
Radio Resource Allocation 
Control 

Slice-level PRB quota Enables modifying the 
resource usage quota for the 
different RAN users 

In the context of the PoC’s final implementation, we have defined the following components and 
mapping: 

• LADS-Sensor (flow telemetry) assumes the role of a Monitoring System (MS).  
• LADS-Brain assumes the role of an Analytics Engine (AE), 
• Mitigator-D assumes the role of a Decision Engine (DE), 
• Mitigator-A assumes the role of an actuator (ACT). 

LADS-Sensor 

The LADS-Sensor plays an essential role in monitoring the network activities in Kubernetes clusters. 
Its primary purpose is to achieve full visibility of network traffic between worker nodes in a cluster 
and within pods in each worker node. Additionally, all external traffic - outgoing and incoming traffic 
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- to cluster’s services. The LADS-Sensor generates flow telemetry data along a set of features that 
are used by the LADS-Brain.  

A LADS-Sensor is deployed on each worker node as a DaemonSet1. This is a standard practice of 
Kubernetes to local-node monitoring. Such setting allows the LADS-Sensor to access all virtual 
network interfaces created on each node, and sniff traffic on those. In addition, the sensor 
periodically goes through all virtual network interfaces and updates those newly created and discards 
sniffing from non-existing (outdated) ones. This is an important functionality towards full traffic 
visibility and automated adaptation to dynamic changes over time on worker nodes. 

The flow telemetry of the LADS-Sensor has been specifically extended to represent flows suitable for 
a Kubernetes computing cluster. Additionally, the LADS-Sensor has been extended to cover flow 
telemetry for the SCTP and HTTP REST communications, as well as specific to ARP protocol to 
determine suspicious or conflicting MAC-IP announcements.  

LADS-Brain 

The LADS-Brain is the cornerstone of the LADS workflow, where a high volume and dimensionality 
of data from the LADS-Sensors are processed for detection of anomalies. The LADS-Brain uses 
unsupervised deep learning algorithm for training and prediction modalities.  

Training modality, the LADS-Brain uses the flow telemetry from all LADS-Sensors to train a model for 
the given observed network behavior of the cluster. The threshold is set up during the training phase 
according to how well the deep learning model has learned the normal traffic data and is used in the 
prediction modality. We note that the training is always performed on the telemetry data from all 
nodes, while the monitoring-prediction modality can be performed either in a fully decentralized 
deployment or in a cluster-centric one, as explained below. 

Monitoring modality, also referred to as a prediction modality, the LADS-Brain loads the model from 
the training phase to observe if there is any deviation in the traffic. These deviations are defined as 
values of a reconstruction error, i.e., how much a traffic flow resembles (can be reconstructed) 
according to the trained model. A reconstruction error below a given threshold is considered normal 
traffic, and above a threshold as anomalous traffic. Additionally, the Brain determines what critical 
features from the flow telemetry cause the detected anomaly and provides a short report of unusual 
values that deviate from the observed ones during the training. 

Such explainability is very useful for determining types of attacks or intrusions, and potential 
mitigation actions. 

 

 
1 https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/  

https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
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FIGURE 2. LADS WORKFLOW TRAINING AND MONITORING MODALITIES 

 

Figure 2 illustrates the LADS workflow discussed above, highlighting the detection of anomalies 
(anomalous flows) based on the trained model and threshold value. The output of the LADS-Brain is 
a log file containing all events of anomaly detection. 

 

Mitigator 

The Mitigator component is specifically defined and implemented for the final PoC implementation 
and demonstration. It has two main roles: 

• Mitigator-D: Its main role is to monitor the event log of the LADS-Brain and match a set of 
rules for each new event added by the Brain. Each set of rules corresponds to a specific 
asset(s) and type of anomaly that needs mitigation. For instance, if a UPF pod or service 
receives a high-volume incoming traffic, say more than 500% of packet/s (pps) or bytes/s 
(bps) than those in training, it is considered as a potential denial of service against the UPF 
pod/service. In this case, the Mitigator-D triggers the assigned to this set of rules (type of 
anomaly) a mitigation action.  

• Mitigator-A: Its main role is to offer a set of named mitigation action and their underlying 
execution means. In the case of the PoC, the execution means are scripts that interact with 
the Kubernetes control plane to stop, move, restart pods. For instance, in the case of a 
potential DoS against the UPF service, Mitigator-A executes the move action of the UPF pod 
implementing the UPF service to another worker node to ensure continuity of the service.  
We note that the LADS-Brain offers mapping of IP addresses found in anomalies to the 
corresponding Kubernetes pods or endpoints. It facilitates the application of mitigation.   
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Architecture 

The architecture of the decentralized intrusion detection and mitigation solution of the 6GDAWN 
project is shown in Figure 3 and Figure 4. 

 
FIGURE 3. DISTRIBUTED MONITORING CLUSTER-CENTRIC DETECTION AND MITIGATION WORKFLOW 

The notion of decentralized intrusion detection is realized by (i) decentralization of the LADS-Sensor 
on each and every node in a Kubernetes cluster including the master node, and (ii) decentralization 
of the LADS-Brain on one or more nodes in a Kubernetes cluster, or on each node of the cluster.  

Figure 3 shows a cluster-centric deployment where a Kubernetes cluster (composed of a set of nodes) 
is associated with one LADS-Brain instance deployed on one of the nodes of the given cluster. This 
relation is not a strict one but recommended and preferred in terms of resource optimization for 
decision-making. In some settings, one may associate multiple Kubernetes clusters to one LADS-
Brain, but in such cases, it is needed to dedicate higher compute and memory resources for the node 
that will host the LADS-Brain. It is recommended to dedicate one or more deep leaning models per 
cluster.  

Furthermore, Figure 3 can be applied by the decentralization of the LADS-Sensor on each and every 
node in a slice, and the decentralization of the LADS-Brain on one or more slices for a cluster of 
slices. The LADS Sensor offers visibility of network telemetry per node or segment of a slice, while 
the LADS Brain manages and assigns deep learning models corresponding to a slice or to a family of 
protocols in a slice. This allows flexible per customer needs, assignment and processing of network 
telemetry and machine learning models for decentralized intrusion detection. 
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FIGURE 4. DECENTRALISED MONITORING, DETECTION AND MITIGATION WORKFLOW 

Given end-user needs, a fully decentralized deployment of the LADS-Brain and Mitigator is supported 
by the current implementation, where each node in a cluster hosts the Sensor, the LADS-Brain with 
the trained models, and the Mitigator in a DaemonSet pod. This modality is illustrated in Figure 4. 
This modality has the benefit of being independent from other nodes local monitoring and detection 
but requires each node of the cluster to offer the necessary hardware resources CPU and RAM. 

In the overall architecture, the LADS-Brain contains one or more trained anomaly detector models 
(deep learning models), and each model is associated either to a set of LADS-Sensors, or to a family 
of protocols across all LADS-Sensors, or both to a set of LADS-Sensors and a family of protocols. It 
is relatively easy to perform such association of Sensors’ data to models on the level of the Brain by 
means of pre-processing all flow telemetry arriving at the LADS-Brain into subsets of flows, each one 
corresponding to a set of sensors and/or protocol families.  

Thus, each subset of flow telemetry data is used for training, and later the same process for prediction 
modality. We note that each flow telemetry contains the necessary data to identify which sensor 
produced the flow telemetry, and what protocol, ports, etc. compose a flow.  

We also note that the location of the LADS-Brain is not relevant to which worker node it is deployed 
as long as the node offers the minimum resources2 needed for the Brain. There is a requirement in 
the current implementation on the Mitigator’s location – it shall be deployed on the same node 
where the Brain is deployed. We recall that the Mitigator enforces mitigations against the Kubernetes’ 
control plane, and as such mitigations apply (have a scope) on each node needed. 

 

 
2 For the sake of reference, the very minimum resources for the LADS-Brain are 2 CPUs and 2 GB RAM. 
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The Mitigator does not need to be on each and every node, but on the node of the Brain. Such a 
restriction can be relaxed offering the Mitigator on a different node from the Brain. 

2.1.1.2 R UC1 PoC1 KPIs Evaluation and Results 

We first recall the KPIs defined for Resilient UC1 PoC1. Table 5 shows the KPIs as defined in E3 for 
the R UC1 PoC1, and their refence points of evaluation defined in the final pilot implementation. 

TABLE 5. RESILIENT UC1 POC1 KPIS AND EVALUATION POINTS IN FINAL POC IMPLEMENTATION 

KPI Unit Type Definition Evaluation Points 

Attacks 
from 
OWASP 

Categorical  Attack At least two types of 
attacks stemming from 
OWASP Kubernetes Top 
Ten. 

Selected two types of attacks stemming from 
Insecure Workload Configurations3: 
- Unauthorized access to host environment  
- Privilege escalation to inject false packets in 
host network  

Attacks of 
high impact 

Categorical Attack At least two types of 
attacks of high impact such 
as FDI, MitM, Unauthorized 
access, DDoS. 

- Unauthorized access 
- DoS 

Attacks 
relevant to 
the 
container 
matrix 

Categorical Attack At least two types of 
attacks relevant to the 
“Containers Matrix” of 
MITRE ATT&CK framework. 
 

- End-point denial of service4  
- Network denial of service5 

F1-Score Numerical Anomaly 
Detector 

Combines precision and 
recall when evaluating a 
classification model. It 
summarizes the model's 
ability to be both accurate 
and comprehensive. A 
higher F1-Score indicates 
better model performance. 

F1-Score evaluation results for each of the two 
types of attacks – end-point DoS and network 
DoS. 

Confusion 
matrix 

Numerical Anomaly 
Detector 

Comparison of the original 
values against the 
predicted values. In this 
case, it compares normal 
and anomalous flows. 

Confusion matrix for each of the two types of 
attacks – end-point DoS and network DoS. 

Time to 
Detect 
Threats 

Numerical Anomaly 
Detector 

The time taken to detect an 
intrusion after it has 
occurred 

Given the network focus of the PoC and the 
adopted LADS system, this KPI will be evaluated 
as part of the next one on the Network Threat 
Detection time. In fact, we will refer to the next 
KPI as the reference KPI from the two. 

 

 
3 https://owasp.org/www-project-kubernetes-top-ten/2022/en/src/K01-insecure-workload-configurations  
4 https://attack.mitre.org/techniques/T1499  
5 https://attack.mitre.org/techniques/T1498  

https://owasp.org/www-project-kubernetes-top-ten/2022/en/src/K01-insecure-workload-configurations
https://attack.mitre.org/techniques/T1499
https://attack.mitre.org/techniques/T1498
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Network 
Threat 
Detection 
time 

Numerical Anomaly 
Detector 

The time taken to detect an 
intrusion after it has 
occurred in network 

This KPI is measured from the time the attack 
(first packet) launched to the time LADS stores 
in its event log the anomaly. 

Increase in 
detection 
accuracy 

% Anomaly 
Detector 

Increasing the accuracy in 
intrusion detection beyond 
the SOTA 

Reference baseline is ≥96% for DoS attacks 
detection accuracy on network level according 
to the state-of-the-art6. Note, we selected the 
SOTA based on closest to LADS machine 
learning approach, Kubernetes environment, 
and DoS attack type.  

Time to 
Respond to 
Threats 

Numerical Anomaly 
Detector 

Decreasing the time to 
response to attack after 
detection  

Measure the time from when LADS outputs an 
event of detected anomaly (attack) to the time 
the mitigation is triggered and completed. We 
note that time of mitigation execution may vary 
from one execution env to another one, but the 
KPI is still a very useful reference.    

 

Attack scenarios. 

We selected two attacks that lead to high impact on containers and container orchestration systems 
such as Kubernetes according to the TTPs of the MITRE ATT&CK Containers Matrix7: 

- Endpoint Denial of Service – the VStream endpoint of the testbed service provisioning. 
- Network Denial of Service –the UPF service of the 5G connectivity testbed.  

 
FIGURE 5: MITRE ATTACK CONTAINERS MATRIX (SOURCE7) SCOPE FOR R UC1 POC1 

Figure 5 shows MITRE ATT&CK Containers Matrix, and the scope of the attacks’ impact.  

 

 
6 Chin‐Wei Tien, Tse‐Yung Huang, Chia‐Wei Tien, Ting‐Chun Huang, Sy‐Yen Kuo, "KubAnomaly: Anomaly detection for the Docker 
orchestration platform with neural network approaches",  Engineering Reports, Dec 2019, Journal article, DOI: 10.1002/eng2.12080 
7 https://attack.mitre.org/matrices/enterprise/containers/  

https://doi.org/10.1002/eng2.12080
https://attack.mitre.org/matrices/enterprise/containers/
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We performed the following network attacks: 

• ARP poisoning (blackholing) on the UPF. Particularly, spoofing the MAC address of the local 
node gateway on the UPF pod’s ARP table. The aim is to DoS (blackhole) the UPF pod’s 
outgoing communications, and consequently the whole UPF service. As a result, the UPF pod 
directs all outgoing communications to the spoofed MAC address of the gateway IP, which 
drops all of them. This is an OSI layer 2 cyber-attack. 

• ARP poisoning (blackholing) on the VStream. Particularly, spoofing the MAC address of the 
local node gateway on the VStream pod’s ARP table. The aim is to DoS (blackhole) the 
VStream pod’s outgoing communications, and consequently the VStream service. As a result, 
the VStream pod directs all outgoing communications to the spoofed MAC address of the 
gateway IP, which drops all of them. This is an OSI layer 2 cyber-attack. 

• ICMP ping flood on the UPF and VStream to show another attack with a similar DoS impact 
but of a high volumetric nature on the OSI layer 3.   

Both types of attacks – ARP poisoning and ICMP ping flood, against the UPF and VStream service 
are based on Insecure Workload Configurations allowing unauthorized access to the host of a node, 
and privilege escalation to execute false packets against the victims’ pods on the node.  

We demonstrate that both attacks are successfully detected on the network layer and mitigations 
timely applied to ensure continuity of both services – the UPF and VStream ones.  

KPI evaluation results. 

A default threshold 10 has been placed for all KPIs reported below. For ARP-based DoS (blackholing) 
attack and ICMP Ping flood attack, we will report the relevant KPIs, such as F1-Score, Confusion matrix 
= < FP, TP, FN, TN >, and Accuracy (≥96%). The Time to Respond to Threats has been measured to 
719 ms (average). 

Two types of deep learning models have been used in the experiments – default and host. The default 
model englobes the flow telemetry of all protocols in a given environment, while the host one 
englobes the telemetry of all flows grouped per host/entity/IP in a given environment. They are 
complementary in scope and visibility.   

All attack trials have been tailored against worker2 and worker3 only. Worker1 was used for normal 
traffic only. We did not use the master node for any worker activity in our experiments (this does not 
change the applicability or scope of the trials).  

All numbers in the column ‘support’ and in the figures of confusion matrix below show the number 
of flows. The confusion matrix is characterized by comparing actual values with predicted values. In 
a binary classification problem, the matrix is described as shown in Figure 6.  
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FIGURE 6. CONFUSION MATRIX BINARY CLASSIFICATION 

where, TN (True Negatives) are the number of legit flows that have correctly been predicted as legit 
traffic. FP (False Positives) are the number of legit flows that have wrongly been predicted as attack 
traffic. FN (False Negatives) are the number of attack flows that have wrongly been predicted as legit 
traffic. TP (True Positives) are the number of attack flows correctly predicted as attack traffic. 

In the following we show the metrics calculated based on the performed attack trials in the testbed 
and for each of the deep learning models default and host. For selected attacks instances, we show 
the packets/s distribution over the trial period to better illustrate the attack nature. 

KPI Worker1 Default - No Attack 

 

 
FIGURE 7. RESILIENT UC1 POC1 KPI – WORKER1 DEFAULT - NO ATTACK 

KPI Worker1 Host - No Attack 

 

 
FIGURE 8. RESILIENT UC1 POC1 KPI – WORKER1 HOST - NO ATTACK 
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KPI Worker3 Default - ARP DoS on UPF (1st trial) 

 

 
FIGURE 9. RESILIENT UC1 POC1 KPI – WORKER3 DEFAULT - ARP DOS ON UPF (1ST TRIAL) 

 

KPI Worker3 Host - ARP DoS on UPF (1st trial) 

 

 
FIGURE 10. RESILIENT UC1 POC1 KPI – WORKER3 HOST - ARP DOS ON UPF (1ST TRIAL) 

 

KPI Worker3 Default - ARP DoS on UPF (2nd trial) 

 

 
FIGURE 11. RESILIENT UC1 POC1 KPI – WORKER3 DEFAULT - ARP DOS ON UPF (2ND TRIAL) 
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KPI Worker3 Host - ARP DoS on UPF (2nd trial) 

 

 
FIGURE 12. RESILIENT UC1 POC1 KPI – WORKER3 HOST - ARP DOS ON UPF (2ND TRIAL) 

 
KPI Worker3 Default - ARP DoS on UPF & VStream 

 
 

 

 

FIGURE 13. RESILIENT UC1 POC1 KPI – WORKER3 DEFAULT - ARP DOS ON UPF & VSTREAM 
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KPI Worker3 Host - ARP DoS on UPF & VStream 

 
 

 

 

FIGURE 14. RESILIENT UC1 POC1 KPI – WORKER3 HOST - ARP DOS ON UPF & VSTREAM 

 
KPI Worker3 Default - Ping DoS 300K on VStream 

 
 

 

 

FIGURE 15. RESILIENT UC1 POC1 KPI – WORKER3 DEFAULT - PING DOS 300K ON VSTREAM 
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KPI Worker3 Host - Ping DoS 300K on VStream 

 
 

 

 

FIGURE 16. RESILIENT UC1 POC1 KPI – WORKER3 HOST - PING DOS 300K ON VSTREAM 

 
KPI Worker2 Default - Ping DoS 300K on UPF 

 
 

 

 

FIGURE 17. RESILIENT UC1 POC1 KPI - WORKER2 DEFAULT - PING DOS 300K ON UPF 
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KPI Worker2 Host - Ping DoS 300K on UPF 

 
 

 

 

FIGURE 18. RESILIENT UC1 POC1 KPI – WORKER2 HOST - PING DOS 300K ON UPF 

 

2.1.1.3 Achievements and lessons learned 

The results for the different attacks shown above are promising for the LADS system. In all attack 
cases, an accuracy over 96% was achieved, with an F1-Score for legitimate cases (shown as row 0) 
exceeding 97%, and an F1-Score for anomalous cases (shown as row 1) on average 90%. 
Furthermore, the confusion matrices confirm the good results obtained. In some cases, there are 
some false positive errors in predicting legitimate traffic as anomalous traffic, but this is an acceptable 
error. Given that the opposite error, misclassified anomalous traffic as normal traffic, is the most 
critical error for anomaly detection systems, where LADS showed detection of all attack instances 
with no failure (no false negatives). 

We confirm the very fruitful work, collaboration and results achieved in the project and above all in 
the domain of decentralized intrusion detection for Kubernetes.  

We summarize the main achievements:  

• Network-anomaly-detection-based assurance of the healthy status of a Kubernetes cluster, 
• Full-scale and visibility of network traffic in a Kubernetes cluster, 
• Enriched and consistent flow telemetry over highly volatile and dynamic IP addresses,  
• Multi-model parallel processing for anomaly detection to scale to the volume and velocity of 

flow telemetry data produced but the different sensors.  

We summarize the main lessons learnt: 

• Kubernetes clusters are challenging environments for anomaly-based network intrusion 
detection due to their highly dynamic nature of containers (pod) deployment over cluster 
lifetime.  
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• Kubernetes clusters require suitable adaptation and consistent flow telemetry over the highly 
dynamic and volatile IP addresses association to pods and services. 

• Kubernetes clusters require a suitable training procedure for the machine learning models. 
Given their dynamic nature and network behavior over time, it is necessary to suitably set up 
the threshold for anomaly detection per model being trained, and above all to automatically 
identify the need to collect more training data to minimize false positives and avoid making 
the threshold too high (permissive). 
The threshold can be more permissive or less permissive depending on the value and volume 
of data. For instance, if during a week of traffic data collected for training, there are only two 
or three administrative accesses to a cluster, these will represent an important to model and 
learn administrative network behavior but will make the deep learning algorithm difficult to 
learn the pattern (the value) of such behavior. This in turn would require setting up in a higher 
threshold value to minimize potential false positives of administrative access but will be 
permissive for other anomalies.  
Alternatively, it is desirable to automate and collect (or synthetically generate) more volume 
of such administrative access for an extended training and make the deep learning model 
learn such behavior allowing lower threshold for anomaly detection. 

2.1.2 RESILIENT UC1 PoC2 – Trustworthy Federated Learning enabled 
through smart contracts and Blockchain 

The overall goal of this PoC is to improve the trustworthiness of FL model employed 6G DAWN 
architecture. This PoC seeks to enhance trustworthiness which is achieved through transparency and 
immutability. The Analytical Engine (AE) serves as the FL client, performing local model training and 
updates at edge sites. The AE collects data from the Monitoring System (MS), analyzes metrics, and 
predicts resource requirements, such as CPU load, ensuring accurate predictions with minimal error, 
such as low Normalized Mean Squared Error (NMSE). On the other hand, the Decision Engine (DE) 
acts as the FL server or central aggregator. It manages the exchange of model weights between FL 
clients (AEs) and aggregates these weights to update the global model. This global model is then 
shared with the AEs for further refinement, creating an iterative learning process. This setup, 
implemented within a cloud-native infrastructure using Kubernetes and Docker containers, ensures 
scalability and flexibility in managing distributed learning tasks across multiple sites. 

In FL by incorporating a blockchain-based system for meticulous logging of all client-aggregator 
interactions. At its core, this system employs a smart contract-driven reputation mechanism to 
monitor and assess the performance of each client rigorously. This assessment results in a reputation 
score, pivotal for decision-making (where 90% of the best performing AE can be selected for the 
global model) within the FL framework presented in Figure 19. This score encapsulates each client's 
historical input and dependability shaping their future contributions to the global model refinement. 
By integrating this mechanism, the PoC aspires to cultivate an FL environment that is not only 
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transparent and trustworthy but also ensures a balanced and integrity-focused collective learning 
process.   

 
FIGURE 19. PROPOSED FRAMEWORK: FUNCTIONAL BLOCKCHAIN-ENABLED O-RAN ARCHITECTURE FOR 
TRUSTWORTHY FL USING SMART CONTRACTSPOC IMPLEMENTATION DETAILS 

We have implemented our smart contracts using Kubuntu 22.04.3 LTS, complemented by 32 GB 
DDR4 RAM to enhance processing capabilities. The development framework used is Hardhat 2.22.4, 
which facilitates the development of Ethereum-based applications, and the smart contracts are 
developed using Solidity v0.8.0 to ensure secure and efficient coding. These details are presented in 
Table 6. 
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TABLE 6. SIMULATION SYSTEM FOR FL DAPP 

Components Specification  
Operating system Kubuntu 22.04.3 LTS 
Memory (RAM) 32 GB DDR4 
Blockchain testnet Amoy testnet 
Development framework Hardhat 2.22.4 
Smart contract language Solidity  
Node Configuration Alchemy node 
Number of accounts 51 Externally Owned Accounts (EOA) and 

their private keys 
 

For our simulations, we utilize the Polygon testnet Amoy, a Layer 2 (L2) scaling solution for Ethereum, 
which operates on top of the Ethereum mainnet to offer faster transaction speeds and lower gas 
costs. This test environment mirrors the conditions of the Polygon mainnet, allowing for a realistic 
assessment of network responsiveness and performance. The choice of Amoy is strategic, enabling 
extensive testing of smart contracts before deployment in live settings. The simulation involves 51 
External Owned Accounts (EOAs) 50 FL clients and 1 server — to simulate different types of 
interactions within the network. These interactions are demonstrated through three phases of 
operation: registration of clients, submission of NMSE value, and calculation of reputation scores. 
Each test was run over 10 iterations to ensure robustness. An essential component of our setup is 
the fetchOracle from Chainlink8, an oracle contract that, along with a custom external adapter, 
enables the integration of blockchain smart contracts with external data sources. This setup allows a 
Chainlink node to retrieve client IDs and their associated NMSE from a predefined mock API, format 
this data appropriately, and feed it into the smart contract. This process is critical for ensuring that 
the smart contract can operate with external data in a simulated environment, which is ideal for 
development and testing. 

2.1.2.1 R UC1 PoC2 KPIs Evaluation and Results 

Previously in E3 and E4 we presented the KPIs that will be presented for this PoC. Such as Gas Used 
for each function within this DApp and Latency measurement for these functions described in Table 
7. 

 

 

 

 

 
8  https://chain.link 
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TABLE 7. SUMMARY OF MAIN SMART CONTRACTS AND THEIR KEY FUNCTIONS 

Proposed Contract Main Function Functionality of Main Function 
registrationClient.sol registerAsClient() Registers each CLSP as a client 
performanceSubmission.sol submitNMSE() Submits weight for a specific round. 
reputationCalculation.sol updateScores() Updates reputation scores based 

on provided NMSE values. 
selectTopPerformers() Selects the top 90% performers 

based on reputation scores 
 

Gas Used:  

Ethereum facilitates the execution of smart contracts through its Ethereum Virtual Machine (EVM), a 
sophisticated virtual computing environment designed to interpret a low-level, stack-based 
bytecode language. This language enables the EVM to perform a wide range of computational tasks 
essential for processing smart contracts. The core of EVM functionality lies in its opcodes, which are 
fundamental instructions that govern the operations of the virtual machine. Function calls within 
smart contracts play a pivotal role in their execution, encompassing activities such as computations, 
data retrievals, and conditional evaluations. Depending on the nature of these operations, a function 
call may trigger various opcodes that either read or modify the blockchain's state, thereby shaping 
how the contract interacts with stored data. 

A particularly significant opcode in this context is SSTORE (Storage Store), which is responsible for 
storing data in the blockchain's state. This operation is critical as it involves writing to the ledger, 
resulting in a permanent change to the contract's state. Given its impact, SSTORE is recognized as a 
gas-intensive operation, with its high cost reflecting the computational effort required and the 
consensus process needed across the network to validate the change. 

Every transaction that leverages these opcodes incurs gas, a unit measuring the computational 
workload needed for execution. As part of our testing process, the completion and confirmation of 
a transaction produce a transaction receipt, which is typically accessed through a statement such as 
const gasUsed = receipt.gasUsed;. This receipt serves as a comprehensive log of the transaction, 
capturing key details like the execution outcome and any events triggered during its course. Of 
particular importance is the gasUsed metric, which quantifies the actual gas consumed. This 
measurement is essential for evaluating the computational resources utilized and provides valuable 
insights into the complexity of the smart contract functions deployed within our FL  DApp framework. 

 Transaction Latency: 

Latency is a key metric for assessing the performance of blockchain systems. It measures the time 
taken for a transaction to move from submission to full confirmation on the network. This metric is 
essential for evaluating the network’s responsiveness and overall efficiency, especially during the 
execution of smart contracts. 
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In our tests, latency is measured as the time difference between two key events: the timestamp of 
the block that confirms the transaction (T_confirmed) and the timestamp when the transaction was 
initially submitted (T_submitted). The formula used is: 

Latency (L) = T_confirmed - T_submitted 

This calculation provides a direct measure of the time required for a transaction to be included in a 
block and fully confirmed. For our analysis, we used the Amoy testnet, a network that closely mirrors 
the Polygon mainnet, to simulate transaction processing under controlled conditions. By utilizing 
blockchain-native timestamps, we can accurately measure the network’s response time. 

To examine factors influencing latency, we conducted tests involving sequential transactions, such 
as registering CLSPs, and concurrent transactions, such as NMSE submissions by multiple CLSPs. 
These tests, summarized in the main functions of our FL DApp smart contracts, simulate interactions 
from multiple accounts. This allows us to evaluate how the network handles varying transaction loads 
and their effect on overall latency. 

 

Gas Consumption:  

TABLE 8. GAS USED DURING INITIALIZATION AND POST-INITIALIZATION PHASES FOR EACH FUNCTION 

Function Phase Gas Used 
registerAsClient() Initialization 43,464 
submitNMSE() Initialization 113,394 

Post-Initialization 96,294 
updateScore() Initialization 1,333,405 

Post-Initialization 458,481, 458,493, 458,505, 
458,517, 458,529, 458,541, 
458,553, 458,565, 458,577 
(difference of 12) 

 

Gas Usage for Client Registration 

The smart contract utilizes the function registerAsClient() to enroll clients, consistently consuming 
43,464 gas for each transaction. This operation's consistency in gas usage is attributed to the 
Ethereum Virtual Machine's (EVM) handling of low-level operations, particularly the SSTORE opcode, 
which facilitates data storage on the blockchain. This opcode is notably expensive as it alters the 
blockchain's persistent state, necessitating replication across all network nodes to maintain 
decentralized ledger integrity. In the context of the registerAsClient() function, as outlined in Table 8 
each invocation updates the blockchain's state by adding a new client's address to the 
registeredClients mapping. When a new address is recorded, the associated storage slot transitions 
from a default zero state to a non-zero value, incurring a high gas cost through this state alteration, 
thereby registering the client on the blockchain. 
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Gas Consumption for NMSE Submission 

As documented in interacting with the submitNMSE() function within the performanceSubmission.sol 
smart contract reveals significant gas consumption nuances. The initial submission by a client in a 
given round ("initialization" phase) consumes 113,394 gas, attributed to setting up several storage 
structures. This includes initializing an array for storing client addresses and mapping client weights. 
The initialization of these storage structures incurs higher gas costs as they transition from unused 
(zero) to used (non-zero) states, which is more gas-intensive. Subsequent submissions within the 
same round decrease to 96,294 gas, as outlined in Table 8 due to the pre-established primary storage 
structures, thus requiring less initialization. It's important to note that each client submission is 
treated as a separate transaction, with storage slots considered "cold" at each access, which 
maintains higher costs due to repeated initialization across transactions. 

Analyzing Gas Usage for Reputation Score Updates 

In examining the reputationCalculation.sol smart contract, distinct patterns in gas usage emerge, 
particularly with the updateScores() function. The first call of this function in a round involves 
significant computational effort, consuming 1,333,405 gas as indicated in Table 8. This high cost is 
due to initializing the storage with NMSEs and updating all 50 clients' reputation scores from zero 
to non-zero. Subsequent rounds stabilize at around 458,481 to 458,577 gas, reflecting the reduced 
computational demand for updating existing data entries. Each additional non-zero byte in the NMSE 
values submitted increases the transaction gas cost slightly, by approximately 12 gas per byte. This 
increment is a result of the higher costs associated with processing non-zero data compared to zero 
data in the EVM. 

Analysis of Client Registration Latency 

 
FIGURE 20. LATENCY FOR REGISTRATION RANGING FROM 1-50 CLIENTS 

The process for client registration within the FL DApp, managed through the registrationClient.sol 
contract, requires the sequential enrollment of 50 clients via the registerAsClient() function, as 
detailed in referenced works. The latency data, visualized in the boxplot in Table 8, predominantly 
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shows closely grouped registration times with a median near 10 seconds, indicating a compact 
interquartile range (IQR). This grouping suggests efficient processing, largely due to Polygon's Layer 
2 technology, which facilitates batch processing off the main Ethereum network, thus alleviating 
congestion and minimizing latency. 

An exceptional latency occurrence, noted at 41.424 seconds, stands out as an anomaly. Analysis links 
this outlier to block number 7908352, which not only processed standard smart contract interactions 
but also generated two internal transactions of the 'create' type. These internal events are not visible 
in the main transaction list but are instead captured within the transaction receipts as part of 
embedded smart contract operations. Such occurrences can significantly influence latency, especially 
under conditions of network strain. Although most registrations are processed expediently, a 
minority face significant delays due to the complexity and nature of transactions within a block. 
Despite the general efficiency promoted by Polygon's modified Proof of Stake (PoS) mechanism, the 
system can still experience slowdowns during periods of heavy transaction loads or intricate 
transactional activities, which are reflected in the observed latency variations as detailed in the 
boxplot. 

 

Analysis of NMSE Submission Latency for Clients 

 
FIGURE 21. LATENCY FOR SUBMITNMSE() FOR CLIENTS RANGING FROM 1 TO 50 DURING FL ROUNDS 

This section examines the latency involved in the submitNMSE() function, where each client from the 
FL DApp submits a NMSE value calculated off-chain. These values are incorporated into the 
performanceSubmission.sol smart contract, which handles their submission. Each of the registered 
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clients proceeds to submit their NMSE values for 50 rounds simultaneously through the 
submitNMSE() function. 

 

In Figure 21, we analyze the latency experienced during the transmission of NMSE values across 
multiple transaction rounds for fifty clients, denoted as CLSP1 to CLSP50.  

The collective boxplot in Figure 21 displays latency across the 50 clients for each of the 50 submission 
rounds. Each boxplot corresponds to an individual account CLSPi , illustrating the distribution and 
central trends of latency times. Although there is a visible trend of increasing latency from CLSP1 to 
CLSP50 it is crucial to highlight that these NMSE submissions are conducted in parallel. The term 
"simultaneously" here implies that all clients are engaging in the transmission of their data to the 
server at the same time via the smart contract, activated by the submitNMSE() function.  

Latency Analysis for Reputation Score Calculation 

 
FIGURE 22. BOX PLOT FOR 50 ROUNDS OF REPUTATION SCORE CALCULATION 

 

Figure 22 displays a boxplot providing a detailed look into the latency performance of our 
blockchain-based reputation management system. The boxplot shows that latency typically centers 
around 6.5 seconds, with most observations lying between 6.2 and just above 7 seconds. However, 
there are a few notable outliers extending up to around 9 and 10 seconds, indicating occasional 
peaks in latency. 

The data from the supports these observations, with the average latency noted at approximately 6.7 
seconds and the median closely matching the 6.5-second mark. The 95th percentile is observed at 
about 7.6 seconds, suggesting that most operations are executed under this time, pointing to a 
generally reliable performance with some rare delays. 



E5: Final report on AI for the 6G DAWN AE/MS/DE 38 
   

 
 

 
 

These sporadic latency spikes are often the result of intensive computational tasks, particularly the 
concurrent processes of calculating reputation scores and selecting top performers. To optimize the 
efficiency of these operations, we bundle these computations into a single transaction at the 
conclusion of each cycle. This method minimizes the frequency of on-chain updates, thereby 
reducing the cumulative burden of gas costs and transaction confirmation delays. The practice of 
grouping transactions is in line with efficient blockchain management strategies seen in both 
Ethereum and Polygon ecosystems. 

For instance, successful implementations like the 1inch protocol have shown that such aggregation 
of tasks can decrease total gas expenditures by 20-30%, effectively reducing the cost per individual 
operation and potentially hastening transaction confirmation by alleviating network congestion. 

In addition to cost savings, this approach to consolidating tasks can yield more uniform latency 
figures. A reduction of 15-25% in median latency has been documented when comparing this 
bundled processing approach to executing each task separately. This synchronization of reputation 
scoring and top-performer selection not only ensures that rankings are based on the latest data for 
better accuracy and integrity but also simplifies the update process. By limiting the complexity and 
frequency of state modifications, we reduce the potential for errors or discrepancies, thus enhancing 
the overall reliability and robustness of the reputation management system. 

2.1.2.2 Achievements and lessons learned 

We have detailed the architectural framework and the blockchain implementation for integrating FL 
in O-RAN environments. Our strategy utilizes Polygon's Layer 2 solutions to develop a DApp 
designed for managing and validating machine learning model training and data exchanges across 
a multi-vendor landscape to support trusted collaborative learning. 

In our implementation, we focus on several critical smart contract functions, including 
registerAsClient(), submitNMSE(), and updateScores(). For each of these functions, we examine and 
report on various blockchain parameters such as the average, standard deviation, and median of 
block size, total gas used by the block, number of transactions, gas prices, and latency. This analysis 
provides insights into the efficiency and effectiveness of our blockchain approach in handling these 
operations within the FL framework. 

While Polygon effectively reduces latency through its off-chain transaction processing capabilities, 
our findings indicate certain challenges in scenarios of high concurrency. These observations 
emphasize the necessity for ongoing enhancements to blockchain infrastructure to meet the rigorous 
demands of Federated Learning (FL). Overall, they prompt critical questions about the deployment 
of FL clients, their trustworthiness within the system, and strategies to enhance their reliability. A 
promising solution to these challenges is the adoption of Zero-Knowledge Machine Learning (ZK-
ML) methods, which ensure accurate execution of algorithms by system components. ZK-ML 
principles strengthen FL by enabling decentralized and collaborative model training without the need 
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for direct data sharing, thus ensuring consistent execution and enhanced security against threats. A 
significant application of this method is the ezkl library, which transforms TensorFlow or PyTorch 
computational graphs into zero-knowledge proofs (ZK-SNARK circuits). This allows FL clients to verify 
computations on private data securely. While our PoC touches on the potential future applications 
of ZK-ML, an in-depth exploration of this topic is outside the scope.  Finally, in FL environments 
characterized by high concurrency and trust challenges, a Service Orchestrator augmented with 
Grover Search Algorithm can optimize the selection and scheduling of trustworthy FL clients by 
efficiently searching through the vast space of potential configurations and participant nodes. Grover 
Search9, known for its quadratic speedup in unstructured search problems, can accelerate decision-
making processes in selecting optimal client sets or verifying ZK-ML proof integrity across multiple 
nodes. 

2.2 Use case RESILIENT Network Resiliency vs QoS and Energy 
Efficiency 

2.2.1 R UC2 PoC1 - Detecting and Isolating Energy Consumption-Heavy Users 
The complexity and scale of Non-Public Networks (NPN) and emerging 6G networks pose significant 
challenges in maintaining optimal system performance. Anomalies in network behavior can indicate 
issues such as hardware malfunctions, configuration errors, or potential security threats. If left 
undetected, these anomalies could degrade network performance, cause service disruptions, and 
introduce security vulnerabilities. Therefore, a robust framework is essential for efficiently detecting 
and analyzing anomalies within NPNs to enhance operational efficiency, reduce downtime, and 
improve the reliability of 6G networks. The initiative to "Detect and Isolate Energy Consumption-
Heavy Users in Non-Public Networks (NPN) with Digital Twin" aims to enhance network resiliency 
through a semi-closed loop system. This system integrates several components: real-time monitoring 
of energy consumption & traffic patterns, anomaly detection analytics, user isolation using network 
APIs, and policy creation for behavior management. The implementation leverages the 6G DAWN 
architecture framework, a Network Digital Twin Platform, and an Application Function to detect and 
manage energy-related anomalies. 

The overall goal of this PoC is to improve the NPN Network Resiliency by deploying a semi-close 
loop consisting of the following components: 

• Monitoring: for real-time energy consumption and performance data 
• Analytics: for performing anomaly detection (for heavy energy users) and alerting the 

relevant services 

 

 
9 Grover, L. K., “Quantum Mechanics Helps in Searching for a Needle in a Haystack,” Physical Review Letters, vol. 
79, no. 2, pp. 325–328, 1997. 
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• Isolation: leveraging on Network API procedures for user allocation to quarantine slices 
• Policy: creation of rules for managing the inspected behavior 

This semi-close loop is achieved via the different models involved in the operation of the 6G DAWN 
AE, implemented via the NDT, which can make predictions. More concretely, in this PoC, it will be 
demonstrated how the 6G DAWN framework can enable the detection and handling of anomalous 
energy-related events to reduce their negative impact on the network performance and availability. 

2.2.1.1 PoC Implementation Details 

2.2.1.1.1 Architecture and Components 

The primary elements of this PoC architecture are:  

• NPN System is deployed at the network edge on the customer premises, in this case at the 
CTTC Lab in Castelldefels, Barcelona, and is composed of the RAN and UPF.   

• Public Network (PN) is deployed at the 5TONIC Lab in Leganes, Madrid. It houses the 
control plane network functions and UPF for central eMBB slice services integrated with the 
NPN.  

• NPN Network Digital Twin (NDT) Platform is a key enabler that serves as a digital replica 
tightly coupled with the deployed physical NPN system. Digital twins open a virtual world of 
possibilities—a safe, simulated testing environment where you can explore 'what-if' scenarios 
to your heart’s (or training model’s) content, with no risk to the real-world counterpart. The 
NDT platform leverages network domain knowledge (theoretical model), automated 
measurement data (empirical model), and field/operations data (trained model). The NDT 
platform is developed to provide a Monitoring Engine service for monitoring real-time energy 
consumption and performance data of the NPN system. It also provides Analytics Engine 
services for performing anomaly detection (for heavy energy users) and alerting relevant 
services for interested Application Functions. Additionally, it provides Isolation services for 
moving specific subscribers to quarantine slices to reduce the impact on the network. 

• Network Exposure Function (NEF) interacts with NDT platform, PCF and other core 
networks functions to expose their services to AFs to support various vertical use cases.   

• Application Function (AF), a crucial facilitator for implementing vertical use cases. It 
influences PNI-NPN characteristics, such as energy consumption optimization, by interacting 
with the Network Digital Twin via NEF. Notably, PNI-NPN covers multiple technological 
domains (RAN, Edge, and Core), enabling the Application Function to influence various 
technological domains. 
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FIGURE 23 PNI-NPN 

Network Slicing 

Ericsson has developed and implemented a Network-slicing blueprint consisting of 5 slices with the 
following characteristics. 

• URLLC Slice: intended for use cases where data timeliness is the relevant quality parameter. 
The concept, for this type of slice, focuses on a combination of low latency (single-digit 
milliseconds) and high reliability (prioritized traffic), with services being provided in-house by 
the Enterprise customer (with a local UPF + local application server (AS)). 

• eMBB Local Slice: in general, intended for use cases related to human-centric and enhanced 
access to multimedia content, services, and data with selected balance of speed and capacity. 
Here the defining quality parameter is the data rate. In the NPN scenario, this slice also keeps 
a local user plane. 

• eMBB Central Slice (Internet): same performance profile as the Local slice. However, the 
concept focuses on having both, Control plane and User Plane rely on NFs located in the CSP 
central DC. 

• Quarantine Slice: after anomaly detection (i.e., high energy consumption users), the 
network/AF might decide to reallocate subscriber for further analysis. 

• Monitoring Slice: for CSP use only, i.e., internal performance testing. 
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FIGURE 24 PNI-NPN SLICE SETUP 

2.2.1.1.2 PoC overview 

The overall functionality of the PoC is shown in Figure 25 as a sequence diagram. Here is a summary 
of the steps involved and depicted in this diagram: 

• Initial Setup: the NPN is running with a specific configuration and a defined traffic model, 
accommodating both URLLC and eMBB slices, in addition to the 3 other slices (eMBB central, 
Quarantine and Monitoring as per section 2.2.1.1.1). 

• Data Collection: network probes continuously collect data, and the NDT Platform 
(Monitoring System & Analytics Engine) derives KPIs from this data. Application probes / 
monitoring systems also collect data, which is analyzed and used by the AF to derive behavior 
baselines. 

• Anomalous User Detection Initiation: an anomalous User Equipment (UE) connected to the 
network is determined by the Network anomaly detection system of the NPN to be 
responsible for disturbing the Key Performance Indicators (KPIs) of the NPN. These findings 
are exposed to the AF, which initiates a more in-depth auditing process. Alternatively, the AF 
may continuously audit the traffic and monitor possible anomalous behavior. 

• Anomaly Decision: the AF uses multiple domain-level information collected previously (like 
traffic flow details and context data) to analyze and decide on the presence of an anomaly 
via its application-aware anomaly detection system (see section 2.2.1.2.1). 

• Isolation Process: if an anomaly is confirmed and pinpointed to a specific UE or set of UEs, 
the AF makes a decision to isolate them. The isolation command is sent through the network 
components, including NEF, NDT Platform, and NPN. The anomalous UE(s) are then 
quarantined and moved to a quarantine slice for further investigation. 

• Post-Isolation Analysis: the AF uses analytics information to monitor and confirm 
improvements in KPIs following the isolation of the anomalous user. Upon manual or 
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automatic correction of the root causes of this anomalous behavior, or upon the 
determination that the behavior does fall under expected patterns after further investigation, 
the AF may decide to remove the policy and move the UE / set of UEs back to their default 
slice. 

This process leverages digital twin technology to simulate and analyze network behavior, enabling 
proactive management of network resources by identifying and isolating users who consume 
excessive energy and disrupt network performance. The implementation details of the most relevant 
phases are further detailed in the sections below. 

 
FIGURE 25. POC SEQUENCE DIAGRAM 
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2.2.1.1.3 Network Anomaly Detection System 

Model 

Based on the data collected and processed by the NDT from the different domain knowledge areas, 
the network-anomaly detection system is capable of reporting unexpected behavior to subscribers 
(or more specifically, to external functions that retrieve and parse the available analysis reports 
produced by the NDT via the NEF interface). Currently, the anomaly reporting algorithm for traffic-
related KPIs has been implemented via Z-scoring for given KPIs. By standardizing monitored data 
relative to its mean and standard deviation, z-scores can provide a normalized metric that highlights 
deviations from typical behavior for both traffic-related KPIs (such as RAN Downlink Throughput or 
RAN Uplink Throughput) and energy-related KPIs (such as RAN Energy Consumption or RAN Energy 
Consumption Per Byte). 

The advantage of z-scores over other alternative models is that they are easy to compute and 
interpret, making them ideal for real-time anomaly detection in complex, dynamic environments like 
cellular networks, where energy consumption patterns can vary across different components and use 
cases. By leveraging z-scoring, network operators can proactively address energy anomalies, 
optimize resource allocation, and ensure sustainable network operation. Furthermore, more detailed 
analysis of reported anomalies, using domain knowledge, can be delegated to the application-aware 
anomaly detection system. 

 

Reporting format 

For those KPIs that support the reporting of anomalies via z-scores, an additional field is added to 
their schema. Apart from providing the average and standard deviation a ‘potentialAnomalies’ field 
is also included. The ‘potentialAnomalies’ field is a map with the following key-value pair: 

• Key: the exact date of the anomaly. 
• Value: the anomaly throughput value. 

This map, encoded as a list of tuples as shown in Figure 25, represents the anomalies in the associated 
KPIs in the time frame selected in the request with their exact date when they happened. The formula 
used to calculate these anomalies is: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − (𝑍𝑍 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 

• Z: a factor to define the window where all traffic outside is considered anomaly. The factor 
used is Z = 2. 

• stddev: the standard deviation for that period defined in the request. 
• mean: the mean throughput for that period defined in the request. 

In summary, any KPI value that falls outside the range of two standard deviations from the mean is 
considered an anomaly. 
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Example use case 

For better understanding the behavior and characteristics of the implemented network anomaly 
detection system, let us consider an illustrative practical scenario. Here, we will use the 
‘RanDownlinkThroughput’ KPI as an example due to it being much easier to visualize with respect to 
energy-related KPIs, which need to be aggregated and processed over significantly longer periods 
of time to produce meaningful results. 

The NPN first collects data based on an exhaustive measurement campaign. The experiment datasets 
generated (testing over 20 distinct configs and 130 different traffic models, with almost 40K KPI 
measurements per KPI being retrieved) are automatically collected and fed to ML models to update 
the training and prediction datasets. 

Using this information as the baseline, when the NPN detects unusual network behavior (where a 
high, unexpected rise of traffic in the Downlink channel – one not previously seen as normal within 
the train data – can be seen around the 17:35 timestamp) it registers internally this event, marking it 
as anomalous. 

 

FIGURE 26. ANOMALOUS BEHAVIOUR 

Then, external applications (such as the application-based anomaly detection system), can 
periodically (or based on given events) retrieve this information via the use of Analytics API 
(implemented as an extension of the NEF interface). This information could be retrieved at a cell-
level (as shown in Figure 26), where the anomaly can be seen included as part of the 
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‘potentialAnomalies’ field, with timestamp 17:34:36) or even at a UE-level, that is, all anomalies 
related with a given user specified via the tgtUe filter field (as shown in Figure 27) 

 

FIGURE 27. ANOMALY DETECTION AT THE CELL LEVEL 
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FIGURE 28. ANOMALY DETECTION AT THE SUBSCRIBER LEVEL 

2.2.1.1.4 Application-aware anomaly detection system 

The application-aware anomaly detection system’s role is to use the service operator’s domain 
knowledge concerning the services managed by it to detect possible offenders once the operator 
has been alerted of anomalous KPI values (such as energy consumption at different infrastructure 
components / levels) observed by the NPN at a large-scale / global level.  

Network model 

Developing a robust traffic model for communication among public safety agents during emergency 
situations presents significant challenges, particularly in sourcing datasets. The availability of relevant 
and comprehensive data is often constrained by several factors, including privacy concerns, the 
sensitive nature of emergency operations, the fragmented systems used by different agencies and 
the lack of sophisticated monitoring systems deployed by these agencies to produce this kind of 
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insights. Public safety communications data, such as logs from dispatch systems or radio traffic 
patterns during crises, is rarely centralized or openly shared. 

Most existing datasets come from limited sources, such as simulated scenarios, specific agency 
studies, or proprietary research initiatives. For example, resources like NIST’s Public Safety 
Communications Research (PSCR) usability survey 10(which includes, among other things, how often 
agents from several agencies use devices) and FCC’s reports on the telecommunications 
infrastructure and use provide some insights, but they are too high level, not providing enough 
detailed usage logs to train and test an anomaly model. 

Therefore, due to the lack of available datasets, the designed model has been trained and evaluated 
using synthetic data (see section ‘Dataset generation’ for implementation details), selecting an 
unsupervised learning algorithm as the ML model to combat the lack of labeled data. Furthermore, 
the synthetic data has been based on the technical case study performed on the communications 
systems by FCC during the handling of a real-life incident-response, where the FCC recorded 
communications usage and performance metrics, together with the estimation of specific traffic / 
application services from the agents in emergency situations as provided by the NYCDIT11.The results 
of this analysis, considering video quality transmitted at 512kbps streams and a density of 21 agents 
per sector, is summarized in Table 9 

TABLE 9. TRAFFIC MODEL 

Type of 
device 

Agents 
with 
device (%) 

Total 
devices 

UL 
(kbps/device) 

DL 
(kbps/device) 

Time 
transmitting 

Time 
receiving 

Mobile video 
camera 

25% 5 256 12 10% 5% 

Data file 
transfer 
CAD/GIS 

87% 18 50 300 15% 5% 

VoIP 100% 21 27 27 5% 15% 
Secure file 
transfer 

12% 3 93 93 5% 5% 

EMS patient 
tracking 

6% 1 30 50 10% 5% 

EMS data 
transfer 

6% 1 20 25 25% 5% 

EMS Internet 
access 

6% 1 10 90 10% 5% 

 

 
10 https://publicsafety.nist.gov/survey.html 
 
 
11  New York City Filing, FCC Docket 07-114, New York City Department of Information and Technology 
(NYCDIT), (Nov. 17, 2009) 

https://publicsafety.nist.gov/survey.html
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Command 
unit DL video 

- 6 0 512 0% 100% 

Command 
unit UL video 

- 2 512 0 100% 0% 

 

Anomaly detection system 

For detecting traffic-related anomalies, some of which may also induce unexpected declines in 
energy efficiency, a One-Class Support Vector Machine (OCSVM) based algorithm has been 
implemented for the main detection system due to the limited availability of labelled network data 
for the type of public protection and disaster relief scenarios analyzed in the previous section, and 
due to the high variability of the expected traffic patterns in these scenarios. OCSVM, with its kernel-
based approach, can model nonlinear relationships in such high-dimensional data effectively, and 
showed better results in the employed datasets with respect to other tested models such as k-means. 
The adaptive nature of OCSVM allows it to adjust to shifts in network traffic patterns over time while 
maintaining a baseline for anomaly detection, which is key for successfully adapting to pattern 
changes in traffic flows due to the introduction of new services or of new response procedures. 
Finally, its computational efficiency ensures that it can scale to large datasets / traffic flows, while still 
being able to detect anomalies in near real-time, a key requirement for rapidly responding to 
possible anomalies and minimizing their impact. 

More concretely, the detection system has been designed as a two-step algorithm composed by an 
initial Random Forest classifier, which classifies the observed traffic flows in different service / 
application types, and then service-specific OSVM models trained for each of the previous service 
classes which categorize the traffic as either anomalous or non-anomalous as shown in Figure 29. In 
the first step, the classifier categorizes the traffic flows into the different traffic services identified in 
Table 9 based on their characteristics. Using the dataset generated with the traffic simulator (as 
described in the next section), this classification was performed based on a register mapping traffic 
endpoints to the different service types. In a production system, this could be done in a similar way 
using an actively maintained registry, or by using the traffic characteristics (source/destination IP(s), 
ports, transport protocol, traffic patterns, etc.) to perform this classification based on heuristics or a 
trained model. Then, in the second step, the per-service OSVM models process each of the traffic 
subsets belonging to the same class and predict, based on the trained data, if any of the involved 
devices is exhibiting abnormal behavior. 
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FIGURE 29. MODEL PIPELINE 

Dataset generation 

As previously mentioned, due mainly to the lack of labeled data describing baseline and anomalous 
traffic in real-life PPDR scenarios, synthetic traffic generation has been used to validate the 
performance of the developed model. It also enables scalability and provides flexibility in the creation 
of controlled scenarios to test multiple scenarios, additionally allowing for the emulation of devices. 

To recreate complex and more realistic scenarios, where a large number of devices are involved, the 
simulator can generate real traffic at both the physical endpoints of the testbed (the end-devices 
connected to the B5G NPN via the CPEs at CTTC) and at container-based emulated network devices 
deployed within other servers connected to the network. More concretely, the emulated devices used 
to recreate the traffic model of the previously analyzed PPDR scenario were deployed in the 
Application Server on the NPN, which had connectivity with the other physical end-devices via the 
testbed’s wireless B5G interface. 

Using a parameter-based configuration, the implemented traffic simulator is capable of simulating 
different types of traffic (e.g. TCP, UDP) over several intervals by adjusting the upload and download 
speeds, as well as the transmitting and receiving times and the different possible communication 
matrix between devices. These adjustments are calculated by applying a random deviation to the 
baseline speeds and times provided in the configuration. The total upload and download traffic 
values are then computed by multiplying the adjusted speeds by the time spent transmitting or 
receiving data. 

After generating normal traffic data, the inject_anomalies method within the traffic simulator is then 
used to introduce irregularities into the dataset. This is done probabilistically, whereas, for example, 
10% of the entries are altered to simulate abnormal behavior. Anomalies can occur at the upload 
and download speeds, as well as the transmitting and receiving times or in the traffic patterns. 

Model implementation and evaluation 

The final implemented application-aware anomaly detection system starts by loading the 
configuration file and the dataset. The configuration file, which was mentioned previously and is 
generated via the DatasetGenerator, contains information about the types of devices and their traffic 



E5: Final report on AI for the 6G DAWN AE/MS/DE 51 
   

 
 

 
 

characteristics. The dataset is loaded from a data file and processed to facilitate access to important 
columns. 

• Renaming Columns: the columns in the configuration file are renamed for easier reference, 
using labels such as 'UL_speed', 'DL_speed', 'transmitting_time', and 'receiving_time'. 

• Dataset Factorization: to handle categorical data, the device_type column, which holds the 
type of device (e.g., mobile, VoIP), is factorized into numerical values. This step is essential 
since machine learning algorithms like OCSVM require numeric inputs. 

• Feature Selection: the features used for training the model include relevant traffic 
characteristics such as the device type, transmitting and receiving times, and 
upload/download speeds. These are extracted into the feature matrix, while the labels 
indicating whether a data point is "Normal" or "Anomalous" are stored in output vector “y”. 

The generated dataset is then split into two subsets: 

• Training set (80%): used to train the model. Importantly, only the samples labeled as "Normal" 
in y_train are used to train the OCSVM model. This is a typical approach for anomaly detection 
since OCSVM is a semi-supervised model that learns from normal data. 

• Test set (20%): reserved for testing and evaluating the model’s ability to detect anomalies. 

Once the data is preprocessed, each of the OCSVM models are trained via the fit method on the 
training data that contains only "Normal" samples. During this training phase, each model attempt 
to learn the boundary that encloses most of the normal data points, enabling the model to later 
classify new data points as either "Normal" or "Anomalous". The following kernel and relevant 
hyperparameters: 

• Kernel: the OCSVM uses a Radial Basis Function (RBF) kernel (kernel='rbf') to map the input 
features into a higher-dimensional space, which helps in separating normal data points from 
potential anomalies. 

• Gamma: set to 'auto', it adjusts the influence of each data point in the model. 
• Nu: the parameter nu=0.01 is crucial as it defines the expected proportion of anomalies in 

the dataset. A smaller nu value tells the model to expect fewer anomalies. 

Finally, the trained two-step model was used to (i) evaluate its performance on the test dataset and 
to (ii) validate its capabilities with real traffic in the 6GDAWN testbed, integrating its predictions with 
the policy enforcement and the monitoring and visualization dashboards.  

Federated Learning 

To achieve better privacy preservation, improved scalability and reduced bandwidth usage in 
distributed environments (where multiple Public Safety Agencies and other organizations from 
different geographical areas and with disparate privacy requirements may be involved), an evolved 
architecture has also been devised as part of R UC2 PoC1. 
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This enhanced architecture relies on the use of Federated Learning (FL) to train local models at each 
Domain, aggregating these updates to build a global anomaly detection model that captures shared 
patterns across the different agencies. This common model could be built within the AE of the IDMO 
(Inter-Domain Manager and Orchestrator) as per the 6G-DAWN architecture defined in E3, which 
would then send the updated global model to the edge devices for fine-tuning, ensuring all local AE 
instances at each of the different Domain can detect network-wide anomalies while retaining the 
ability to spot localized ones. 

The global model would consist of a unique service classifier and individual OCSVMs (one for each 
of the existent network services / applications across the whole set of Domains in the network), which 
would be trained with the domain-level models’ update data. More specifically, the local models 
would send the following information to be aggregated at the inter-domain level for each of the 
OCSVM-based classifiers: 

• Support Vector Points: the compressed set of data points defining the local decision 
boundary (between anomalous and normal traffic). 

• Kernel information: Kernel function type (such as RBF or polynomial) and associated 
hyperparameters (e.g. Gamma=auto and nu=0.01 in the implemented model). 

• Anomaly Scores: statistical summaries or metrics derived from local training to inform the 
server of data trends. 

This information would then be aggregated using support vector merging, where the individual 
vectors would be processed to remove overlapping or redundant ones and adjust their weights 
based on their relevance. This relevance would be based on the data volume at each Domain and 
service with respect to the rest, on the frequency of appearance and on the confidence in local 
models (where more advanced models developed by certain agencies with higher accuracy could 
have higher weights). Compared with other aggregation techniques such as Federated Averaging 
(FedAvg), this approach ensures the global model retains the critical boundaries of service-specific 
models at each domain (without altering them) and would improve the interpretability of the global 
model, where its decision boundary can be easily interpreted and visualized in terms of the merged 
local support vectors (a critical feature for the development of a joint model where multiple agencies 
with different security/resiliency criteria and requirements must agree to a common decision 
boundary). 

Regarding the location / abstraction level of the domain-specific models with regards to the 6G-
DAWN architecture, these would be maintained by the AE at the Infrastructure layer (e.g. within the 
Core/Transport technology domain as an external AF or as a NWDAF model; or within the Cloud 
technology domain) and aggregated / routed towards the upper level of the Management and 
Orchestration Layer via the DMOs (Domain Managers and Orchestrators). 

Finally, the use of Federated Learning to create a global anomaly-detection model is particularly 
relevant for the analyzed use case due to the unique requirements and constraints regarding data 
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privacy and security of different public safety agencies (e.g. police, firefighters, EMS) due to their 
unique operational and legal contexts. The information logged and used to train the devised anomaly 
detection system (such as communication flows between agents and/or users and their location, 
which may be inferred from the collected data) may be protected under special regional and/or 
agency-specific regulations such as GDPR, LOPDGDD or LOPS in Spain. As already mentioned briefly, 
this enhanced architecture is also key to achieve scalability, where otherwise large amount of data 
(detailed and granular data logs of traffic and other infrastructure-related data) would need to be 
exchanged between DMOs/IDMOs over large distances for the creation of a global model. 
Additionally, the use of FL can improve the interpretability of the model and enable faster adaptation 
to changing network conditions, supported services and response procedures. 

2.2.1.1.5 Policy enforcement 

This component, implemented as service within the network Core and exposed to the AF via the NEF 
interface, allows external services to, among other things, isolate certain users behaving anomalously 
under their own defined parameters and criteria. As first outlined in deliverable E3, due to the fact 
that the 3GPP NEF interface (3GPP TS 23.50312) does not support an interface for making policy 
changes to the PCF (allowing external applications and services to perform these changes), a custom 
extension has been defined. The implemented NEF extension therefore allows external applications 
to isolate certain users (i.e. UEs) in the network via the following parameters: 

• npnID: ID of the NPN to which the given UE is connected. 
• subscriptionID: the ID associated to the given UE, that is, the IMSI assigned to it. 

 

FIGURE 30. ISOLATION API 

Upon the reception of the request initiated by the AF, the Core will re-map the specified UE (based 
on the npnID and subscriptionID specified by the AF) to the Quarantine slice (S-NSSAI #129-1 in the 
testbed) as shown in Figure 30 (note that the depicted elements, such as the gNodeB, the UPF or the 
AMF, correspond to the same elements before the isolation – only the assigned slice changes). 

 

 
12 https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3334 



E5: Final report on AI for the 6G DAWN AE/MS/DE 54 
   

 
 

 
 

 
FIGURE 31. ISOLATION IN ACTION 

This alternative was chosen to isolate anomalous users over other possible approaches, such as the 
use of URSP rules because it enables (i) increased, centralized control, (ii) the enforcement of the 
redirection without requiring cooperation from the UEs, (iii) a higher scalability, being able to isolate 
multiple UEs at once without having to update and interact with all the individual UEs and (iv) it 
enables real-time enforcement, improving the response time to anomalous behavior and minimizing 
its impact as much as possible. 

The alternative approach, consisting in the installation of URSP rules at the anomalous UE, that was 
initially consider as a possible way of isolating the UEs, is shown in Figure 32. This would be achieved  

 
FIGURE 32. URSP CONFIGURATION AT THE UE 

2.2.1.2 R UC2 PoC1 KPIs Evaluation and Results 

The set of KPIs originally defined as part of E3 are summarized in Table 10 

TABLE 10. RESILIENT UC2 KPIS 

KPI Unit Type Definition 
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NPN Resiliency 
Improvement – 
Energy 
Optimization 

% Resiliency By means of isolating high-energy consuming (anomalous) users 
into the quarantine slice, overall energy consumption of the main 
service slice will be decreased. Thus, overall NPN resiliency will 
be increased. 

NPN Resiliency 
Improvement – 
Resource 
Availability 

% Resiliency By means of isolating high-energy consuming (anomalous) users 
into the quarantine slice, the network resources previously 
used/wasted by anomalous users will be available to be used by 
remaining existing users of the NPN. Thus, overall NPN resiliency 
will be increased. 

True Positive 
Rate (*) 

% Anomaly 
Detection 
Effectiveness 

This KPI is used to assess how well the anomalous user detection 
algorithm on NDT/AF is operating. 

Precision (*) % Anomaly 
Detection 
Effectiveness 

This KPI is used to assess how well the anomalous user detection 
algorithm on NDT/AF is operating. 

 

2.2.1.2.1 Application-aware anomaly detection system 

In terms of the application-aware anomaly detection system, the evaluation of how the designed 
system contributes towards the detection and its accuracy/precision is challenging due to the limited 
access to labeled or raw data for reference as already mentioned in section 2.2.1.2.1. However, based 
on the synthetic data generated by the data generator as per the traffic model previously defined 
(based on existing reports about traffic patterns in PPDR scenarios), it is possible to validate the 
model, assessing its viability and approximating its expected performance. Based on this generated 
data, the model’s performance in relation to the previously defined KPIs is studying bellow for both 
the initial classification model and the 2-step one. 

Basic OCSVM implementation 

The results from the first iteration of the anomaly detection system, based on a single OCSVM global 
model for all traffic are summarized in the form of a confusion matrix as shown in Table 11 As it can 
be seen, the observed performance is relatively good, particularly in its ability to accurately detect 
anomalies (TPR=1, accuracy=0.97). The model shows therefore perfect sensitivity with a high 
accuracy, together with a high precision and F1 score (0.92 and 0.96 respectively) using the synthetic 
dataset.  

TABLE 11. CONFUSION MATRIX FOR BASIC OCSVM IMPLEMENTATION 

OCSVM_Prediction Anomalous Normal 
Label: Anomalous 6,579 0 
Label: Normal 543 12,204 

 

2-step classification model 
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For the 2-step model, a traffic classifier was added as a first processing step via the use of a random 
forest. As it can be seen in Table 12, it was highly successful in classifying the traffic flows, achieving 
almost perfect performance. 

TABLE 12. PERFORMANCE OF TRAFFIC CLASSIFICATION 

Task Precision Recall F1-Score Support 
Command unit DL video 1 1 1 1,998 
Command unit UL video 1 1 1 675 
Data file transfer CAD/GIS 1 1 1 5,999 
EMS Internet access 1 0.99 1 322 
EMS data transfer 1 1 1 305 
EMS patient tracking 0.99 0.99 0.99 333 
Mobile video camera 1 1 1 1,635 
Secure file transfer 1 1 1 1,020 
VoIP 1 1 1 7,039 

 

Finally, the overall performance of the system (aggregating all predictions among the different traffic 
classes) is shown in Table 13 in the form of a confusion matrix. As it can be seen, this second iteration 
of the model has proven to slightly improve its performance, mainly with regards to its precision, 
with TPR=1, accuracy=0.97, precision=0.93 and F1=0.96. Beyond the slight improvement of the 
performance observed with the given tested, the main advantage of the second approach is the 
greater visibility it enables, being able to associate anomalous with given services or with certain 
devices; and to better fine-tune the model in real-life scenarios. As an example, Figure 33 shows the 
TPR and precision rates for each of the individual models per traffic type, exhibiting how, for example, 
the models for the video streams are the least effective. 

TABLE 13. CONFUSION MATRIX FOR 2-STEP MODEL  

OCSVM_Prediction Anomalous Normal 
Label: Anomalous 6,664 0 
Label: Normal 488 12,162 
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FIGURE 33. MODEL PERFORMANCE BY TRAFFIC TYPE 

2.2.1.2.2 Energy consumption and resilience global impact 

With regards to the first two KPIs defined in Table 10, it is challenging to objectively measure the 
improvement in energy consumption resulting from the design and implementation of the anomaly 
detection and isolation system for B5G networks, primarily because there are no available benchmark 
datasets to compare against and because the simulation of complex scenarios (such as the ones 
described in E3) resulting in unexpectedly high energy consumptions are hard to simulate. Without 
a baseline dataset of normal energy consumption patterns, it becomes difficult to quantify the 
precise energy savings or efficiency gains that the system achieves. 

However, the results from the implemented machine learning models (both for the network and 
application-aware detections systems) demonstrate its effectiveness in detecting anomalies, 
specifically identifying UEs that contribute to unexpectedly high energy consumption. Through the 
isolation of these anomalous UEs into a separate slice, the impact on overall network energy 
consumption can be significantly reduced. Although direct measurement comparisons are limited, 
the model clearly shows its capability to address energy inefficiencies by dynamically managing these 
outliers, highlighting the potential for operational savings and improved network sustainability in 
real-world B5G environments. 

It also must be highlighted that the implemented system not only achieves energy efficiencies via 
the isolation of anomalous UEs, but also via the optimization of the network configurations applied 
to the NPN, allowing to enforce the configuration that would produce the lowest energy 
consumption while still offering expected performance as seen in E UC1 PoC2. The use of an anomaly 
detection system and enforcer is critical in this type of scenarios in order to fulfill the energy savings 
promised by the NPN Recommender, as it helps to ensure that the network behavior stays close to 
the traffic models with which the NPN was able to produce its energy consumption and performance 
predictions. 
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As an example, for the specific traffic model defined in section E UC1 PoC2, the ML algorithms 
implemented as part of the 6G-DAWN project is capable of producing 4 additional configurations 
with lower power consumption than the initial configuration of Bandwidth - 60MHz and TDD 
Pattern - DDDSU (10:2:2) as seen in Figure 34. In this scenario, the optimal energy-efficient 
configuration with minimal resource usage that meets the required KPIs (Throughput, One Way 
Delay, and Energy Consumption) is Bandwidth - 20MHz and TDD Pattern - DDDSUDDSUU (10:2:2). 
More concretely, using either of the two top recommended configurations for energy efficiency, the 
system has the potential to achieve the following energy savings: 

• 60Mhz Uplink-172W·h vs 20MHz Uplink-156W·h would achieve a 9% energy saving. 
• 60Mhz Downlink-278W·h vs 20MHz Downlink-253W·h would achieve a 9% energy saving. 

 

FIGURE 34. RECOMMENDATION RESPONSE 

However, these savings can only be achieved, while still complying to the expected UL Throughput, 
DL Throughput, One Way Delay KPIs, if all possible disruptions and anomalous behavior is addressed 
by the network. In a nutshell, effectively detecting and isolating anomalous users and network 
components is key in achieving the potential energy savings attainable via the optimization of 
network configurations, in reducing additional energy overuse and in reducing the impact of 
anomalous components to other users, therefore improving the resiliency of the network. 

2.2.1.3 Achievements and lessons learned 

As already stated, the current PoC demonstrates a scenario where an anomalous device is 
quarantined to (i) reduce the negative impact it is able to inflict to other devices in terms of QoS, to 
(ii) minimize the negative impact of that the device is causing by diagnosing and correcting its 
behavior and to (iii) improve the overall resilience of the network. 
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In terms of the capability to detect energy-related anomalies via the creation of a Network Digital 
Twin based on 3 domain knowledge areas (theoretical, empirical and trained) – i.e. the Network 
anomaly detection system – the primary achievement of this research project has been establishing 
a robust correlation between the network configuration and traffic patterns of cellular networks with 
their expected energy consumption. These findings highlight how different configurations and usage 
scenarios impact energy efficiency, providing valuable insights for optimizing network operations. A 
key takeaway is the absence of a reliable instantaneous energy index, as energy consumption 
measurements at granular time scales exhibit high variance and are prone to significant errors. 
Instead, the research underscores the necessity of aggregating data over a minimum duration of one 
hour (with aggregated energy consumption values in the magnitude of 1 Wh) to mitigate variance 
and produce meaningful, reliable energy consumption metrics. 

In terms of the capability of creating service specific anomaly detection mechanisms (via the 
Application-aware anomaly detection system), this PoC has designed a two-step unsupervised 
learning algorithm capable of pinpointing possible offending UEs in a B5G network when anomalies 
in energy consumption or other KPIs are detected by the NDT. Notably, the implemented model has 
been trained and tested to detect traffic-based anomalies in Public Protection and Disaster Relief 
(PPDR) scenarios, demonstrating its robustness and adaptability. This capability is achieved using 
untrained data, highlighting the model’s effectiveness in identifying irregularities without prior 
knowledge of the traffic patterns, making it a valuable tool for dynamic and high-stakes network 
environments. 

In terms of its contributions to the future architecture of 6G networks, this PoC has contributed with 
the definition of custom extension to the NEF interface, that allow network intelligence to expose 
detailed energy consumption metrics and anomaly patterns to external applications, enabling 
seamless integration of energy efficiency into service-level criteria. This aligns with the concepts 
outlined in 3GPP TR 22.882, which explores the inclusion of energy efficiency as a key service 
requirement in future networks. The demonstrated ability to detect and address energy anomalies 
not only advances energy-aware service design but also supports the optimization of network 
resources, paving the way for a sustainable, intelligent 6G ecosystem that prioritizes energy efficiency 
as a foundational service characteristic. 

Furthermore, the implemented scenario, which shares some similarities with the use case 5.6 outlined 
in 3GPP TR 22.882, introduces multiple key differences and enhancements with respect to the latter 
one: 

• While in the use case proposed by the 3GPP TSG SA [3GPP TSGSA13], it is the company 
operating the NDT the one responsible for finding that a certain component within the NPN 

 

 
13 3GPP TSG SA https://www.3gpp.org/3gpp-groups 
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(in their case, the UPF) is consuming an abnormal amount of energy (using the information 
provided by the operator), in the PoC proposed in this project, this responsibility is delegated 
to the 6G DAWN framework. More concretely, the AE, using the information collected by the 
MS (consisting of multiple software probes and sensors) can detect the anomalous event and 
notify the interested parties by sending a notification event to the AF. This modification 
greatly reduces the effort required by NDT operators to effectively respond to these types of 
events, relieving external AFs from the burden of detecting anomalous energy consumption 
events only requiring them to handle these via the implementation of their own business-
specific workflows. 

• While TR 22.882 [3GPP TR282] 14does not explicitly mention how the energy consumption 
measurement information, together with other network usage-related analytics used to 
diagnose the event, are exposed to the NPN operator (they identify this challenge as a 
potential new requirement), this project is proposing to employ an augmented version of the 
3GPP NWDAF component to do this. 

• While in the use case in TR 22.882 [3GPP TR282] 15 the only way of resolving the negative 
impact of the device towards the network is to apply an application-specific fix (which is out 
of the scope of the network), this project introduces an interface that allows the enforcement 
of preventive network-specific actions with the intention to reduce its negative impact on the 
network. More specifically, this is supported by the 6G DAWN DE component, which allows 
the controlled redirection of the UE to a different slice via the network Core. 

These key differences introduce numerous advantages with respect to the initial use case 5.6 in 3GPP 
TR 22.882, simplifying the work required by NPN operators to handle these events, achieving better 
interoperability with 3rd party systems, and improving the resiliency of the network by automatically 
actuating upon the detection of anomalous behavior. 

2.2.1.3.1 Other anomalous events 

In addition to the scenario implemented as part of the project, where the isolation was determined 
in terms of expected traffic flows by the application-aware detection system, there are multiple other 
energy-related anomalous scenarios that would benefit from the proposed 6G DAWN architecture 
and from the extension of the current 3GPP specifications proposed in this project. Some of the 
possible behaviors or scenarios with the potential to have a detrimental effect on the energy 
efficiency of the network are: 

 

 
14  3GPP TR 22.882 “Study on Energy Efficiency as service criteria”: 
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=4096 
15  3GPP TR 22.882 “Study on Energy Efficiency as service criteria”: 
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=4096 
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• Intermittent connections: the continuous establishment and termination of device 
connection can strain the network and provoke high energy consumption. One possible 
response from the network could be to release any existing PDU sessions from the device 
and block future connection requests with a SM back-off timer, similarly as how the network 
could react to a TOO_FREQUENT_SERVICE_ACCESS event (Table 6.7.5.3-3 TS 23.288 [3GPP 
TS238]). 

• Defective MCS negotiation: the incorrect selection of the session Modulation and Coding 
Scheme (either maliciously or due to a faulty device), selecting modes which incur in high 
energy consumption, may also have a negative impact on the network (both in terms of 
energy efficiency and QoE for other users). The appropriate detection and handling of these 
anomalies would improve the resilience of 6G networks in these events. 

• Inefficient traffic patterns: especially in NPN networks where traffic patterns and network 
configurations can be adjusted to achieve the best possible performance, unplanned traffic 
behavior may critically affect energy efficiency. One example would be devices unexpectedly 
sending immediately bursty, non-critical traffic, breaking the break sleep mode of the 
different radio components, instead of batching all traffic in periodic, long-lived 
transmissions. 

• Transmissions at cell borders: communication with devices at cell borders are specially 
energy intensive due to a greater signal attenuation (on top of other signal impairments, 
requiring higher energy per transmitted bit), to interferences with neighboring cells and to 
higher overheads (especially when frequently changing between base stations within the 
neighboring area). 

While some of these scenarios could be directly detected via the monitoring of unexpected events 
solely from a network traffic or mobility perspective (instead of how these affect the energy 
consumption of the network), some more complex scenarios involving a combination of multiple, 
smaller deviations which jointly contribute to a significant rise in energy consumption could only be 
detected via the proposed measures. Moreover, in cases where energy consumption has a direct 
impact on the availability of the network, such as those where power outages occur, may have a 
direct impact on the resilience of the network and its ability to continue operation in critical 
circumstances. 
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3 Conclusions  
6G DAWN delivers a Decentralized AI closed loop (MS-AE-DE) that is implemented, validated with 
KPIs, by exploiting inter-building block interfaces across all RESILIENT PoCs, those defined in previous 
deliverable E3.  

The implemented decentralized 6GDAWN AI (MS-AE-DE) achievements in RESILIENT PoCs are as 
follows:  

• Decentralized intrusion detection and mitigation in kubernetes cluster with E2E 5G 
connectivity and video-streaming service with accuracy of almost 97%. The PoC achievements 
include: Network-anomaly-detection-based assurance of the healthy status of a Kubernetes 
cluster, Full-scale and visibility of network traffic in a Kubernetes cluster, Enriched and 
consistent flow telemetry over highly volatile and dynamic IP addresses,  and multi-model 
parallel processing for anomaly detection to scale to the volume and velocity of flow 
telemetry data produced but the different sensors. 

• Improving the trustworthiness of FL model employed in 6GDAWN by Blockchain 
implementation for integrating FL in O-RAN environments. The implemented strategy utilizes 
Polygon's Layer 2 solutions to develop a DApp designed for managing and validating 
machine learning model training and data exchanges across a multi-vendor landscape to 
support trusted collaborative learning. 

• Improving the reliability of 6G networks by detecting and isolating users who have high 
energy consumption. The PoC demonstrates a scenario where an anomalous device is 
quarantined to (i) reduce the negative impact it inflicts on other devices in terms of QoS, to 
(ii) minimize the negative impact of that the device is causing by diagnosing and correcting 
its behavior, and to (iii) improve the overall resilience of the network. 

Overall, E5 illustrates the successful implementation and validation of decentralized AI (MS-AE-DE) 
in all RESLIENT PoCs of 6GDAWN through their defined KPIs in E3. 
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